skip to main content


Search for: All records

Creators/Authors contains: "Ranivoharimanana, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As the largest-bodied member of the family Lemuridae and the presumed primary disperser of large seeds, Pachylemur, now extinct, was a critical member of Madagascar’s primate communities. Material of this genus has been found at almost all subfossil sites across Madagascar, but extensive samples of this taxon are known from very few. It has been one of the more historically neglected of the “giant” extinct lemurs, as it is not very different in morphology from its nearest extant relative, Varecia, except in body size. The flooded cave called Vintany at the Tsimanampesotse National Park in southwestern Madagascar has yielded numerous specimens of P. insignis, including whole skulls and mandibles, many isolated postcranial elements, and, importantly, partial associated skeletons of immature individuals. This material allows us to address previously unanswered questions regarding its paleobiology, including questions concerning its growth and development. This article focuses specifically on its life history profile (especially developmental sequences and life history-related traits such as Retzius line periodicity of the teeth and endocranial volume in adults). We ask to what extent, despite its larger size, did Pachylemur “grow” like its smaller-bodied relatives? Did its dental eruption sequence and index of Relative Retardation of the Replacement teeth resemble those of its closest relatives? Did it, like other lemurs, have a Retzius line periodicity that is lower than “expected” for a primate of its body size, and if so, what is the likely significance of this? Was its brain smaller than expected for a primate of its body size? For these and other questions, we evaluate how large-bodied lemurs differ from anthropoids of comparable body size. 
    more » « less
  2. The Mahafaly karst of southwestern Madagascar is rich with subfossil deposits. Vintany Cave (also known as Aven Cave), a submerged cave at Tsimanampesotse National Park, is the most subfossil-dense submerged cave known in the world. In particular, the cave has yielded abundant remains of birds, including some that are extinct. Among 1077 bird specimens recovered under water from the cave floor and from excavated sediments at this site, 35 different taxa were identified. Taxonomic attributions were made through comparative morphological analysis, using comparative osteological museum collections. The majority of these species still occur inside the park. Five extinct taxa were recovered from the cave, including one species of elephant bird (Aepyornithidae, Mullerornis modestus), two species of giant endemic ground couas (Cuculidae, Coua cf. berthae and C. cf. primaeva), a shelduck (Alopochen sirabensis, Anatidae), and a lapwing (Charadriidae, Vanellus madagascariensis). Two extant taxa, Haliaeetus vociferoides (Accipitridae) and Threskiornis bernieri (Threskiornithidae) are locally extirpated, but exist at other localities in Madagascar. Remains of Greater Vasa Parrots (Psittaculidae, Coracopsis vasa) are predominant. Some of the identified extinct and locally extirpated taxa from Vintany Cave have an aquatic dependence, most specifically freshwater, that suggests that there has been environmental modification such as reduction of the important water sources in the region of Tsimanampesotse, and wetter conditions in the area in the past. 
    more » « less
  3. Madagascar is famous today not only for its unique biodiversity, but also for the high levels of endemism of plants and animals. Less appreciated is the fact that, in the recent past, the island had even greater biodiversity with many other endemic animals such as giant lemurs, elephant birds, pygmy hippopotami, tortoises, and crocodiles that have gone extinct within the past 2000 years. The extinction of many of these groups is thought to be the result of both human activities and environmental change. Most research has focused on the lemurs, hippopotami, and elephant birds. Other recently extinct animals, including the Malagasy horned crocodile (Voay robustus), are relatively poorly known. Madagascar’s subfossil crocodylians include two taxa: the extinct V. robustus (the Malagasy horned crocodile) and the extant Crocodylus niloticus. The latter arrived on Madagascar relatively recently and we know little about the habitat preferences, distributions and ecological interactions (if any) of either species during the Holocene. In order to better understand the recent history of crocodylian extinction in Madagascar, we must first identify which species were present and where they were found. We present here a description of subfossil crocodylian material collected from the newly discovered subfossil site of Tsaramody (Sambaina Basin), a high-elevation wetlandenvironment. At 1655 m, it represents the highest elevation subfossil site on the island. Here we describe both cranial (e.g., premaxillary, jugal, and squamosal “horns”) and postcranial elements (e.g., osteoderms). Our research indicates that crocodile material from Tsaramody appears morphologically to belong to V. robustus, the extinct species. However, oval tuberosities on the frontal bone and a triangular extension of the squamosal bone suggest previously unrecognized variation. 
    more » « less
  4. The relative importance of climate and humans in the disappearance of the Malagasy megafauna remains under debate. Data from southwestern Madagascar imply aridification contributed substantially to the late Holocene decline of the megafauna (the Aridification Hypothesis). Evidence for aridification includes carbon isotopes from tree rings, lacustrine charcoal concentrations and pollen assemblages, and changes in fossil vertebrate assemblages indicative of a local loss of pluvial conditions. In contrast, speleothem records from northwestern Madagascar suggest that megafaunal decline and habitat change resulted primarily from human activity including agropastoralism (the Subsistence Shift Hypothesis). Could there have been contrasting mechanisms of decline in different parts of Madagascar? Or are we lacking the precisely dated, high resolution records needed to fully understand the complex processes behind megafaunal decline? Reconciling these contrasting hypotheses requires additional climate records from southwestern Madagascar. We recovered a stalagmite (AF2) from Asafora Cave in the spiny thicket ecoregion, ~10 km from the southwest coast and just southeast of the Velondriake Marine Reserve. U-series and 14C dating of samples taken from the core of this stalagmite provide a highly precise chronology of the changes in hydroclimate and vegetation in this region over the past 3000 years. Speleothem stable oxygen and carbon isotope analyses provide insight into past rainfall variability and vegetation changes respectively. We compare these records with those for a stalagmite (AB2) from Anjohibe Cave in northwestern Madagascar. Lastly, odds ratio analyses of radiocarbon dates for extinct and extant subfossils allow us to describe and compare the temporal trajectories of megafaunal decline in the southwest and the northwest. Combined, these analyses allow us to test the Aridification Hypothesis for megafaunal extinction. 
    more » « less
  5. The relative importance of climate and humans in the disappearance of the Malagasy megafauna remains under debate. Data from southwestern Madagascar imply aridification contributed substantially to the late Holocene decline of the megafauna (the Aridification Hypothesis). Evidence for aridification includes carbon isotopes from tree rings, lacustrine charcoal concentrations and pollen assemblages, and changes in fossil vertebrate assemblages indicative of a local loss of pluvial conditions. In contrast, speleothem records from northwestern Madagascar suggest that megafaunal decline and habitat change resulted primarily from human activity including agropastoralism (the Subsistence Shift Hypothesis). Could there have been contrasting mechanisms of decline in different parts of Madagascar? Or are we lacking the precisely dated, high resolution records needed to fully understand the complex processes behind megafaunal decline? Reconciling these contrasting hypotheses requires additional climate records from southwestern Madagascar. We recovered a stalagmite (AF2) from Asafora Cave in the spiny thicket ecoregion, ~10 km from the southwest coast and just southeast of the Velondriake Marine Reserve. U-series and 14C dating of samples taken from the core of this stalagmite provide a highly precise chronology of the changes in hydroclimate and vegetation in this region over the past 3000 years. Speleothem stable oxygen and carbon isotope analyses provide insight into past rainfall variability and vegetation changes respectively. We compare these records with those for a stalagmite (AB2) from Anjohibe Cave in northwestern Madagascar. Lastly, odds ratio analyses of radiocarbon dates for extinct and extant subfossils allow us to describe and compare the temporal trajectories of megafaunal decline in the southwest and the northwest. Combined, these analyses allow us to test the Aridification Hypothesis for megafaunal extinction. The trajectories of megafaunal decline differed in northwestern and southwestern Madagascar. In the southwest, unlike the northwest, there is no evidence of decoupling of speleothem stable carbon and oxygen isotopes. Instead, habitat changes in the southwest were largely related to variation in hydroclimate (including a prolonged drought). The megafaunal collapse here occurred in tandem with the drought, and agropastoralism likely contributed to that demise only after the megafauna had already suffered drought-related population reduction. Our results offer some support for the Aridification Hypothesis, but with three caveats: first, that there was no island-wide aridification; second, that aridification likely impacted megafaunal decline only in the driest parts of Madagascar; and third, that aridification was not the sole factor promotingmegafaunal decline even in the dry southwest. A number of megafaunal species survived the prolonged drought of the first millennium, and then likely succumbed to the activities of agropastoralists. 
    more » « less